36 lines
697 B
Python
36 lines
697 B
Python
|
#!/usr/bin/env python3
|
||
|
import glob
|
||
|
from sklearn.model_selection import train_test_split
|
||
|
|
||
|
data = glob.glob("../raw_data/*.png")
|
||
|
|
||
|
print(data)
|
||
|
|
||
|
dataset = []
|
||
|
labels = []
|
||
|
|
||
|
for item in data:
|
||
|
label = item.split('/')[1].replace(".png","") #dataset/32154.png
|
||
|
labels.append(label)
|
||
|
dataset.append(item)
|
||
|
|
||
|
train_X, validate_X, train_y, validate_y = train_test_split(dataset, labels, test_size=0.2)
|
||
|
|
||
|
f = open('training.txt', 'w')
|
||
|
|
||
|
count = 0
|
||
|
|
||
|
for count in range(len(train_X)):
|
||
|
f.write(train_X[count] + " " + train_y[count] + "\n")
|
||
|
|
||
|
f.close()
|
||
|
|
||
|
count = 0
|
||
|
|
||
|
f = open('testing.txt', 'w')
|
||
|
|
||
|
for count in range(len(validate_X)):
|
||
|
f.write(validate_X[count] + " " + validate_y[count] + "\n")
|
||
|
|
||
|
f.close()
|